Quasiturbine with Carriages

Even with its added complexity, the Quasiturbine engine with carriages has a relatively simple design. Each part is described below.

The housing (stator), which is a near oval known as the "Saint-Hilaire skating rink," forms the cavity in which the rotor rotates. The housing contains four ports:

  • A port where the spark plug normally sits (the spark plug can also be placed in the housing cover -- see below).
  • A port that is closed with a removable plug.
  • A port for the intake of air.
  • An exhaust port used to release the waste gases of combustion.

quasiturbine with carriage engine housing

The housing is enclosed on each side by two covers. The covers have three ports of their own, allowing for maximum flexibility in how the engine is configured. For example, one port can serve as an intake from a conventional carburetor or be fitted with a gas or diesel injector, while another can serve as an alternate location for a spark plug. One of the three ports is a large outlet for exhaust gasses.

quasiturbine carriage engine cover ports

How the various ports are used depends on whether the automotive engineer wants a traditional internal combustion engine or one that delivers the super-high compression required of photo-detonation.

The rotor, made of four blades, replaces the pistons of a typical internal combustion engine. Each blade has a filler tip and traction slots to receive the coupling arms. A pivot forms the end of each blade. The job of the pivot is to join one blade to the next and to form a connection between the blade and the rocking carriages. There are four rocking carriages total, one for each blade. Each carriage is free to rotate around the same pivot so that it remains in contact with the inner wall of the housing at all times.

quasiturbine carriage engine internal mechanism

Each carriage works closely with two wheels, which means there are eight wheels altogether. The wheels enable the rotor to roll smoothly on the contoured surface of the housing wall and are made wide to reduce pressure at the point of contact.

The Quasiturbine engine doesn't need a central shaft to operate; but of course, a car requires an output shaft to transfer power from the engine to the wheels. The output shaft is connected to the rotor by two coupling arms, which fit into traction slots, and four arm braces.

quasiturbine carriage engine output mechanism

When you put all of the parts together, the engine looks like this:

quasiturbine engine with carriage
Photo courtesy Quasiturbine.com
Quasiturbine engine with carriages

Notice that the Quasiturbine engine has none of the intricate parts of a typical piston engine. It has no crankshaft, valves, pistons, push rods, rockers or cams. And because the rotor blades "ride" on the carriages and wheels, there is little friction, which means oil and an oil pan are unnecessary.

Now that we've looked at the major components of the Quasiturbine with carriages, let's see how everything comes together. This animation illustrates the combustion cycle:

quasiturbine combustion cycle
Photo courtesy Quasiturbine.com

The first thing you'll notice is how the rotor blades, as they turn, change the volume of the chambers. First the volume increases, which allows the fuel-air mixture to expand. Then the volume decreases, which compresses the mixture into a smaller space.

The second thing you'll notice is how one combustion stroke is ending right when the next combustion stroke is ready to fire. By making a small channel along the internal housing wall next to the spark plug, a small amount of hot gas is allowed to flow back to the next ready-to-fire combustion chamber when each of the carriage seals passes over the channel. The result is continuous combustion, just like in the airplane gas turbine!

What all this amounts to in the Quasiturbine engine is increased efficiency and performance. The four chambers produce two consecutive circuits. The first circuit is used to compress and expand during combustion. The second is used to expel exhaust and intake air. In one revolution of the rotor, four power strokes are created. That's eight times more than a typical piston engine! Even a Wankel engine, which produces three power strokes per rotor revolution, can't match the performance of a Quasiturbine.