Carbon Chains in Petroleum Products

The different chain lengths have progressively higher boiling points, so they can be separated out by distillation. This is what happens in an oil refinery -- crude oil is heated and the different chains are pulled out by their vaporization temperatures. (See How Oil Refining Works for details.)

The chains in the C5, C6 and C7 range are all very light, easily vaporized, clear liquids called naphthas. They are used as solvents -- dry cleaning fluids can be made from these liquids, as well as paint solvents and other quick-drying products.

The chains from C7H16 through C11H24 are blended together and used for gasoline. All of them vaporize at temperatures below the boiling point of water. That's why if you spill gasoline on the ground it evaporates very quickly.

Next is kerosene, in the C12 to C15 range, followed by diesel fuel and heavier fuel oils (like heating oil for houses).

Next come the lubricating oils. These oils no longer vaporize in any way at normal temperatures. For example, engine oil can run all day at 250 degrees F (121 degrees C) without vaporizing at all. Oils go from very light (like 3-in-1 oil) through various thicknesses of motor oil through very thick gear oils and then semi-solid greases. Vasoline falls in there as well.

Chains above the C20 range form solids, starting with paraffin wax, then tar and finally asphaltic bitumen, which is used to make asphalt roads.

All of these different substances come from crude oil. The only difference is the length of the carbon chains!

Still curious about petroleum uses and processing? Check out the links on the next page for related articles and quizzes to test your knowledge.

­