Car Suspension Parts

Chassis
Chassis

­The suspension of a car is actually part of the chassis, which comprises all of the imp­ortant systems located beneath the car's body.

These systems include:

  • The frame - structural, load-carrying component that supports the car's engine and body, which are in turn supported by the suspension
  • The suspension system - setup that supports weight, absorbs and dampens shock and helps maintain tire contact
  • The steering system - mechanism that enables the driver to guide and direct the vehicle
  • The tires and wheels - components that make vehicle motion possible by way of grip and/or friction with the road

So the suspension is just one of the major systems in any vehicle.

With this big-picture overview in mind, it's time to look at the three fundamental components of any suspension: springs, dampers and anti-sway bars.

Springs
Today's springing systems are based on one of four basic designs:

  • Coil springs - This is the most common type of spring and is, in essence, a heavy-duty torsion bar coiled around an axis. Coil springs compress and expand to absorb the motion of the wheels.

coil springs
Photo courtesy Car Domain
Coil springs

    leaf spring
    Photo courtesy HowStuffWorks Shopper
    Leaf spring
  • Leaf springs - This type of spring consists of several layers of metal (called "leaves") bound together to act as a single unit. Leaf springs were first used on horse-drawn carriages and were found on most American automobiles until 1985. They are still used today on most trucks and heavy-duty vehicles.

  • Torsion bars - Torsion bars use the twisting properties of a steel bar to provide coil-spring-like performance. This is how they work: One end of a bar is anchored to the vehicle frame. The other end is attached to a wishbone, which acts like a lever that moves perpendicular to the torsion bar. When the wheel hits a bump, vertical motion is transferred to the wishbone and then, through the levering action, to the torsion bar. The torsion bar then twists along its axis to provide the spring force. European carmakers used this system extensively, as did Packard and Chrysler in the United States, through the 1950s and 1960s.

torsion bar
Photo courtesy HowStuffWorks Shopper
Torsion bar

  • Air springs - Air springs, which consist of a cylindrical chamber of air positioned between the wheel and the car's body, use the compressive qualities of air to absorb wheel vibrations. The concept is actually more than a century old and could be found on horse-drawn buggies. Air springs from this era were made from air-filled, leather diaphragms, much like a bellows; they were replaced with molded-rubber air springs in the 1930s.

air springs
Photo courtesy HSW Shopper
Air springs

Based on where springs are located on a car -- i.e., between the wheels and the frame -- engineers often find it convenient to talk about the sprung mass and the unsprung mass.

Springs: Sprung and Unsprung Mass
The sprung mass is the mass of the vehicle supported on the springs, while the unsprung mass is loosely defined as the mass between the road and the suspension springs. The stiffness of the springs affects how the sprung mass responds while the car is being driven. Loosely sprung cars, such as luxury cars (think Lincoln Town Car), can swallow bumps and provide a super-smooth ride; however, such a car is prone to dive and squat during braking and acceleration and tends to experience body sway or roll during cornering. Tightly sprung cars, such as sports cars (think Mazda Miata), are less forgiving on bumpy roads, but they minimize body motion well, which means they can be driven aggressively, even around corners.

So, while springs by themselves seem like simple devices, designing and implementing them on a car to balance passenger comfort with handling is a complex task. And to make matters more complex, springs alone can't provide a perfectly smooth ride. Why? Because springs are great at absorbing energy, but not so good at dissipating it. Other structures, known as dampers, are required to do this.