Like HowStuffWorks on Facebook!

How Automotive Air Conditioning Works

The Low-pressure Side

Thermal Expansion Valve (TXV): Here, the system changes from the high-pressure side to the low-pressure side. If you were to touch this part of the system, you'd feel it change from hot to cold.

The high-pressure liquid refrigerant flows from the receiver-dryer through the expansion valve, where it is allowed to expand. This expansion reduces the pressure on the refrigerant, so it can move into the evaporator. The valve senses pressure and regulates the flow of refrigerant, which allows the system to operate steadily, but the moving parts of the valve can wear out and sometimes require replacement.

Some vehicles have an orifice tube rather than an expansion valve, but it serves the same purpose in allowing the refrigerant to expand and the pressure to be lowered before the liquid enters the evaporator. The orifice tube allows refrigerant to flow at a constant rate and has no moving parts, but it can become clogged with debris over time. Systems with an orifice tube automatically turn the AC system on and off to regulate the flow of refrigerant to the evaporator.

Evaporator: This is where the magic happens. While all the other parts of the system are located in the engine compartment, this one is in the cabin, usually above the footwell on the passenger side. It also looks like a radiator, with its coil of tubes and fins, but its job is to absorb heat rather than dissipate it.

Refrigerant enters the evaporator coil as a cold, low-pressure liquid, ideally at 32 degrees Fahrenheit (0 degrees Celsius), which is why you don't want any water in the system. The refrigerant doesn't freeze at this temperature, but it does have a very low boiling point. The heat in the cabin of the car is enough to make the R-134a in the evaporator boil and become a gas again, just like water turning back to steam. In its gaseous form, refrigerant can absorb a lot of heat.

The gas moves out of the evaporator -- and out of the passenger compartment of the car, taking the heat with it. A fan blowing over the outside of the evaporator coil blows cool air into the passenger compartment. The refrigerant in gas form then enters the compressor, where it is pressurized and the whole process starts all over again.

If the system uses an orifice tube, there will be an accumulator between the evaporator and the compressor. An orifice tube sometimes lets too much refrigerant into the evaporator and it doesn't all boil. Since the compressor cannot compress liquid, only gas, the accumulator traps any excess liquid before it can get into the compressor.

The evaporator also takes humidity out of the air in the car, which helps you feel cool. Water in the air condenses on the evaporator coil, along with dirt and pollen and anything else floating around in the cabin. When you stop the car and see water dripping underneath, it's probably the water from the AC evaporator and nothing to worry about.

We've all heard about "recharging the AC," so we'll take a quick look at that next.

More to Explore